6.3 Orthogonal Projections

Theorem 8. The Orthogonal Decomposition Theorem
Let W be a subspace of R™. Then each y in R™ can be written uniquely in the form

y=y+z (1)
where y isin W and z is in W . In fact, if {ui,...,u,}is any orthogonal basis of W, then
e . i ) 5 y'u
P ST = e (2)
w u; - uap u, -4y

andz=y —y.

The vector ¥ in (2) is called the orthogonal projection of y onto VW and often is written as projy; y.
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FIGURE 2 The orthogonal projection

of y onto W.
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Example1.letu; = | 5f,uz = | 1| andy = |2]|.Observe that {uj, us} is an orthogonal basis for
-1 1 3
W = Span {uy,us}. Write y as the sum of a vector in W and a vector orthogonal to W.
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A Geometric Interpretation of the Orthogonal Projection
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FIGURE 3 The orthogonal projection of y is the
sum of its projections onto one-dimensional
subspaces that are mutually orthogonal.

Properties of Orthogonal Projections

Remark: If y isin W = Span {u,...,u,}, thenprojjy y =y

Theorem 9. The Best Approximation Theorem
Let W be a subspace of R”, let y be any vector in R”, and let ¥ be the orthogonal projection of y onto W.
Then y is the closest point in W to y, in the sense that

ly =yl <lly = vl
for all v in W distinct from y.

The vector ¥ in Theorem 9 is called the best approximation to y by elements of TV
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FIGURE 4 The orthogonal projection - W ’s orthogonm! o
of y onto W is the closest point in W ﬂ Iy g
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Determine the distance from y to the subspace W.

Ag: Nede : the distbine Trom n Fo?wf in R" 4+ «
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Vievet Fo"mL (4‘3‘) in W .

Thus {,} the Best Approximodion Thm , ## is
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Example 3. Find the closest point to,:jy in the subspace W spanned by vy and vs.

3 3 1
|:1:| |: 1:| |:1:|
y = 5 y V1 = 1 , Vo = 1
1 1 -1
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Example 2. Ifu; = [ 5] , Uy = |: 1:| Y = [2:| ,and W = Span {uy, uy}, as in Example 1.
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Recall that an orthogonal basis for a subspace W of R" is a basis for W that is also an orthogonal set.

Theorem 10. If {uy,...,u,} is an orthonormal basis for a subspace W of R", then

projyyy = (y - up)ug + (y - ug)ug + -+ + (y - up)u,

fU=[u uy --- up],thenprojWy:UUTyforaIIyinR“.

1/@] ,and W = Span {u; }.
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a. Let U be the 2 x 1 matrix whose only column is u;. Compute U';fq’f?nd lLU,:fz
b. Compute projy, y and (UUT)y.
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Example 4. Lety = [9} , Uy = l
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Exercise 5. Find the best approximation to z by vectors of the form ¢1 vy + caVa.
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7 = Vi = Vo = .
0 y V1 1 y V2 4
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Solution. Note that v; and v are orthogonal. By the Best Approximation Theorem, the closest pointin
1
- Z-V] Z - Vo 1 0
S tozisz = vi+ ve = —Vv; + 0vy = )
pan {vy,va} tozis - 1 Vs - Vs 2 5 V1 2 ~1/2
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