6.3 Orthogonal Projections

Theorem 8. The Orthogonal Decomposition Theorem

Let W be a subspace of $\mathbb{R}^n.$ Then each \mathbf{y} in \mathbb{R}^n can be written uniquely in the form

$$\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z} \tag{1}$$

where $\hat{\mathbf{y}}$ is in W and \mathbf{z} is in W^{\perp} . In fact, if $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ is any orthogonal basis of W, then

$$\mathbf{\hat{y}} = \mathbf{\hat{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \dots + \frac{\mathbf{y} \cdot \mathbf{u}_p}{\mathbf{u}_p \cdot \mathbf{u}_p} \mathbf{u}_p$$
(2)

and $\mathbf{z} = \mathbf{y} - \hat{\mathbf{y}}$.

The vector $\hat{\mathbf{y}}$ in (2) is called the **orthogonal projection of** \mathbf{y} **onto** W and often is written as $\operatorname{proj}_W \mathbf{y}$.

FIGURE 2 The orthogonal projection of \mathbf{y} onto W.

Example 1. Let $\mathbf{u}_1 = \begin{bmatrix} 2\\5\\-1 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} -2\\1\\1 \end{bmatrix}$, and $\mathbf{y} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$. Observe that $\{\mathbf{u}_1, \mathbf{u}_2\}$ is an orthogonal basis for $W = \operatorname{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$. Write \mathbf{y} as the sum of a vector in W and a vector orthogonal to W.

ANS: By Thm 8. We know
$$\vec{y} = \hat{\vec{y}} + \vec{z}$$
, where
 $\hat{\vec{y}} = \frac{\vec{y} \cdot \vec{u}_1}{\vec{u}_1 \cdot \vec{u}_1} \vec{u}_1 + \frac{\vec{y} \cdot \vec{u}_2}{\vec{u}_2 \cdot \vec{u}_2} \vec{u}_2 \in W$
 $= \frac{2+10-3}{4+25+1} \vec{u}_1 + \frac{-2+1+3}{4+1+1} \vec{u}_2$
 $= \left[\frac{3}{5} - 1\right]_{\frac{3}{5} + \frac{3}{5}} = \left[-\frac{3}{5}\right]_{\frac{3}{5} + \frac{3}{5}}$

A Geometric Interpretation of the Orthogonal Projection

FIGURE 3 The orthogonal projection of **y** is the sum of its projections onto one-dimensional subspaces that are mutually orthogonal.

Properties of Orthogonal Projections

Remark: If \mathbf{y} is in $W = \mathrm{Span} \{ \mathbf{u}_1, \dots, \mathbf{u}_p \}$, then $\mathrm{proj}_W \mathbf{y} = \mathbf{y}$

Theorem 9. The Best Approximation Theorem

Let W be a subspace of \mathbb{R}^n , let \mathbf{y} be any vector in \mathbb{R}^n , and let $\hat{\mathbf{y}}$ be the orthogonal projection of \mathbf{y} onto W. Then $\hat{\mathbf{y}}$ is the closest point in W to \mathbf{y} , in the sense that

$$\|\mathbf{y} - \hat{\mathbf{y}}\| < \|\mathbf{y} - \mathbf{v}\|$$

for all \mathbf{v} in W distinct from $\hat{\mathbf{y}}$.

The vector $\hat{\mathbf{y}}$ in Theorem 9 is called **the best approximation to y by elements of** W.

Example 2. If
$$\mathbf{u}_1 = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{y} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, and $W = \text{Span} \{\mathbf{u}_1, \mathbf{u}_2\}$, as in Example 1.

Determine the distance from \mathbf{y} to the subspace W.

ANS: Note: the distance from a point in
$$\mathbb{R}^n$$
 to a
subspace W is the distance from \overline{Y} to the
Nearst point (\widehat{y}) in W .
Thus by the Best Approximation Thm, it is
 $\|\widehat{y} - \widehat{y}\| \frac{Hse the rosult}{In Example 1} \|\widehat{z}\| = \sqrt{(\frac{7}{5})^2 + (\frac{14}{5})^2} = \sqrt{\frac{1^2 + 14^2}{5^2}}$
 $= \sqrt{\frac{7^2 + 3^27^2}{5^2}} = \sqrt{\frac{1^2 \cdot s^2}{5^2}} = \sqrt{\frac{7}{5}}$

Example 3. Find the closest point to \mathbf{y} in the subspace W spanned by \mathbf{v}_1 and \mathbf{v}_2 .

 $\mathbf{y} = \begin{bmatrix} 3\\1\\5\\1 \end{bmatrix}, \mathbf{v}_{1} = \begin{bmatrix} 3\\1\\-1\\1 \\1 \end{bmatrix}, \mathbf{v}_{2} = \begin{bmatrix} 1\\-1\\1\\-1 \\1 \\-1 \end{bmatrix}$ Note ∇_{1} and ∇_{2} are orthogonal. The Best Approximation Thm states that $\hat{\mathcal{Y}} = \operatorname{proj}_{W} \hat{\mathcal{Y}}$ is the object point to \mathcal{I} in W. $\hat{\mathcal{Y}} = \frac{\mathcal{Y} \cdot \nabla_{1}}{\nabla_{1} \cdot \nabla_{1}} = \nabla_{1} + \frac{\mathcal{Y} \cdot \nabla_{2}}{\nabla_{2} \cdot \nabla_{2}} = \nabla_{2}$ $= \frac{9 + (-51)}{9 + (+1) + 1} = \nabla_{1} + \frac{3 - (+5 - (-1))}{1 + (+(+1))} = \nabla_{2}$ $= \begin{bmatrix} \frac{3}{2} + \frac{3}{2} \\ \frac{1}{2} - \frac{3}{2} \\ -\frac{3}{2} + \frac{3}{2} \end{bmatrix} = \begin{bmatrix} 3\\-1 \\ -1 \\ -1 \end{bmatrix}$ Recall that an **orthogonal basis** for a subspace W of \mathbb{R}^n is a basis for W that is also an orthogonal set.

Theorem 10. If $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is an <u>orthonormal basis</u> for a subspace W of \mathbb{R}^n , then $\operatorname{proj}_W \mathbf{y} = (\mathbf{y} \cdot \mathbf{u}_1)\mathbf{u}_1 + (\mathbf{y} \cdot \mathbf{u}_2)\mathbf{u}_2 + \dots + (\mathbf{y} \cdot \mathbf{u}_p)\mathbf{u}_p$ If $U = [\mathbf{u}_1 \quad \mathbf{u}_2 \quad \cdots \quad \mathbf{u}_p]$, then $\operatorname{proj}_W \mathbf{y} = UU^T \mathbf{y}$ for all \mathbf{y} in \mathbb{R}^n .

Example 4. Let
$$\mathbf{y} = \begin{bmatrix} 7 \\ 9 \end{bmatrix}$$
, $\mathbf{u}_1 = \begin{bmatrix} 1/\sqrt{10} \\ -3/\sqrt{10} \end{bmatrix}$, and $W = \text{Span} \{\mathbf{u}_1\}$.

a. Let U be the 2×1 matrix whose only column is \mathbf{u}_1 . Compute $U_{\mathbf{x}_2}^T U_{\mathbf{x}_1}$ and $U_{\mathbf{x}_1}^T U_{\mathbf{x}_2}^T$ b. Compute $\operatorname{proj}_W \mathbf{y}$ and $(UU^T)\mathbf{y}$.

(a).

$$\mathcal{U} = \frac{1}{\sqrt{10}} \begin{pmatrix} 1 \\ -3 \end{pmatrix}$$

$$\mathcal{U}^{\mathsf{T}}\mathcal{U} = \frac{1}{\sqrt{10}} \times \frac{1}{\sqrt{10}} \times \begin{pmatrix} 1 & -3 \end{pmatrix} \begin{pmatrix} 1 \\ -3 \end{pmatrix} = \frac{1}{\sqrt{0}} (1+9) = 1$$

$$\mathcal{U}\mathcal{U}^{\mathsf{T}} = \frac{1}{\sqrt{10}} \times \frac{1}{\sqrt{10}} \cdot \begin{pmatrix} -1 \\ -3 \end{pmatrix} \begin{bmatrix} 1 & -3 \\ -3 \end{bmatrix} = \frac{1}{\sqrt{0}} \begin{pmatrix} 1 & -3 \\ -3 & 9 \end{bmatrix}$$

(b) By Thm 10.
proj
$$\vec{y} = (\vec{y} \cdot \vec{u}) \vec{u}_{1} = \sqrt{10} \times (7-27) \times \frac{1}{\sqrt{10}} \begin{bmatrix} 1\\ -3 \end{bmatrix} = \frac{1}{10} \begin{bmatrix} -20\\ -60 \end{bmatrix} = \begin{bmatrix} -2\\ -6 \end{bmatrix}$$

 $uu^{T} \vec{y} = \frac{1}{10} \begin{bmatrix} 1 & -3\\ -3 & 9 \end{bmatrix} \begin{bmatrix} 7\\ 9 \end{bmatrix} = \frac{1}{10} \begin{bmatrix} -20\\ 21+81 \end{bmatrix} = \begin{bmatrix} -2\\ -6 \end{bmatrix}$

Exercise 5. Find the best approximation to \mathbf{z} by vectors of the form $c_1\mathbf{v}_1 + c_2\mathbf{v}_2$.

$$\mathbf{z} = egin{bmatrix} 2 \ 4 \ 0 \ -1 \end{bmatrix}, \mathbf{v}_1 = egin{bmatrix} 2 \ 0 \ -1 \ -3 \end{bmatrix}, \mathbf{v}_2 = egin{bmatrix} 5 \ -2 \ 4 \ 2 \end{bmatrix}.$$

Solution. Note that \mathbf{v}_1 and \mathbf{v}_2 are orthogonal. By the Best Approximation Theorem, the closest point in $\begin{bmatrix} 1 \end{bmatrix}$

Span {
$$\mathbf{v}_1, \mathbf{v}_2$$
} to \mathbf{z} is $\hat{\mathbf{z}} = \frac{\mathbf{z} \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 + \frac{\mathbf{z} \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2 = \frac{1}{2} \mathbf{v}_1 + 0 \mathbf{v}_2 = \begin{bmatrix} 1\\0\\-1/2\\-3/2 \end{bmatrix}$.