6.3 Orthogonal Projections

Theorem 8. The Orthogonal Decomposition Theorem
Let W be a subspace of \mathbb{R}^{n}. Then each \mathbf{y} in \mathbb{R}^{n} can be written uniquely in the form

$$
\begin{equation*}
\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z} \tag{1}
\end{equation*}
$$

where $\hat{\mathbf{y}}$ is in W and \mathbf{z} is in W^{\perp}. In fact, if $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is any orthogonal basis of W, then

$$
\begin{equation*}
\operatorname{proj}_{\omega} \vec{y}=\hat{\mathbf{y}}=\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}+\cdots+\frac{\mathbf{y} \cdot \mathbf{u}_{p}}{\mathbf{u}_{p} \cdot \mathbf{u}_{p}} \mathbf{u}_{p} \tag{2}
\end{equation*}
$$

and $\mathbf{z}=\mathbf{y}-\hat{\mathbf{y}}$.
The vector $\hat{\mathbf{y}}$ in (2) is called the orthogonal projection of \mathbf{y} onto W and often is written as $\operatorname{proj}_{W} \mathbf{y}$.

Note: when W is one-dim'l. i.e. W is spanned by only one vector \vec{u}. Eq (2) matches the formula in $\$ 6.2$.

FIGURE 2 The orthogonal projection of \mathbf{y} onto W.

Example 1. Let $\mathbf{u}_{1}=\left[\begin{array}{r}2 \\ 5 \\ -1\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{r}-2 \\ 1 \\ 1\end{array}\right]$, and $\mathbf{y}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$. Observe that $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is an orthogonal basis for $W=\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$. Write \mathbf{y} as the sum of a vector in W and a vector orthogonal to W.
Ans: By The 8. We know $\vec{y}=\hat{\vec{y}}+\vec{z}$. where.

$$
\begin{aligned}
\stackrel{\rightharpoonup}{y} & =\frac{\vec{y} \cdot \vec{u}_{1}}{\vec{u}_{1} \cdot \vec{u}_{1}} \frac{\vec{u}}{\frac{9}{30}}+\frac{3}{10}+\frac{\vec{y} \cdot \vec{u}_{2}}{\vec{u}_{2} \cdot \vec{u}_{2}} \vec{u}_{2} \in w \\
& =\frac{2+10+3}{4+25+1} \overrightarrow{u_{1}}+\frac{-2+2}{4}+\frac{1}{2} \\
& =\left[\begin{array}{l}
\frac{3}{5}-1+1 \\
\frac{3}{2}+\frac{1}{2} \\
-\frac{3}{10}+\frac{1}{2}
\end{array}\right]=\left[\begin{array}{c}
-\frac{2}{5} \\
\frac{1}{5}
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\vec{z} & =\vec{y}-\hat{\vec{y}} \epsilon w^{\perp} \\
& =\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]-\left[\begin{array}{c}
-\frac{2}{5} \\
2 \\
\frac{1}{5}
\end{array}\right]=\left[\begin{array}{c}
7 \\
0 \\
\frac{14}{5}
\end{array}\right]
\end{aligned}
$$

Thus the decomposition for \vec{y} is

$$
\begin{aligned}
& \vec{y}=\underset{11}{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]}=\underset{11}{\left[\begin{array}{c}
-\frac{2}{5} \\
2 \\
\frac{1}{5}
\end{array}\right]}+\underset{\frac{7}{5}}{\left[\begin{array}{c}
7 \\
0 \\
\frac{14}{5}
\end{array}\right]} \\
& \hat{\vec{y}} \in W \quad \vec{z} \in W^{\perp}
\end{aligned}
$$

A Geometric Interpretation of the Orthogonal Projection

FIGURE 3 The orthogonal projection of \mathbf{y} is the sum of its projections onto one-dimensional subspaces that are mutually orthogonal.

Properties of Orthogonal Projections

Remark: If \mathbf{y} is in $W=\operatorname{Span}\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$, then $\operatorname{proj}_{W} \mathbf{y}=\mathbf{y}$

Theorem 9. The Best Approximation Theorem

Let W be a subspace of \mathbb{R}^{n}, let \mathbf{y} be any vector in \mathbb{R}^{n}, and let $\hat{\mathbf{y}}$ be the orthogonal projection of \mathbf{y} onto W.
Then $\hat{\mathbf{y}}$ is the closest point in W to \mathbf{y}, in the sense that

$$
\|\mathbf{y}-\hat{\mathbf{y}}\|<\|\mathbf{y}-\mathbf{v}\|
$$

for all \mathbf{v} in W distinct from $\hat{\mathbf{y}}$.
The vector $\hat{\mathbf{y}}$ in Theorem 9 is called the best approximation to \mathbf{y} by elements of W.

FIGURE 4 The orthogonal projection of \mathbf{y} onto W is the closest point in W proof: Let $\vec{V} \in W$ distinct from $\stackrel{\rightharpoonup}{y}$ then

$$
\vec{y}-\vec{v}=(\vec{y}-\hat{\vec{y}})+(\hat{\vec{y}}-\vec{v})
$$

By The $8, \vec{y}-\vec{y}$ is orthogonal to W. As $\hat{\vec{y}}-\vec{v}$ is in $W, \vec{y}-\hat{y}$ is orthogonal to $\hat{\vec{y}}-\vec{v}$. to \mathbf{y}.

> By the Pythagorean Them $$
\|\vec{y}-\vec{v}\|^{2}=\|\vec{y}-\stackrel{\rightharpoonup}{y}\|^{2}+\|\hat{\vec{y}}-\vec{v}\|^{2}
$$

As $\hat{\vec{y}}$ is distinct from $\vec{v},\|\hat{y}-\hat{v}\|^{2}>0$,

$$
\|\vec{y}-\hat{y}\|<\|y-\vec{v}\|
$$

Example 2. If $\mathbf{u}_{1}=\left[\begin{array}{r}2 \\ 5 \\ -1\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{r}-2 \\ 1 \\ 1\end{array}\right], \mathbf{y}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$, and $W=\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$, as in Example 1.
Determine the distance from \mathbf{y} to the subspace W.
ANS: Note: the distance from a point in \mathbb{R}^{n} to a subspace W is the distance from \vec{y} to the nearest point $(\hat{\vec{y}})$ in W.
Thus by the Best Approximation Thy, it is

$$
\begin{aligned}
\|\vec{y}-\hat{\vec{y}}\| \frac{\text { Use the result }}{\text { in Example 1 }}\|\vec{z}\| & =\sqrt{\left(\frac{7}{5}\right)^{2}+\left(\frac{14}{5}\right)^{2}}=\sqrt{\frac{7^{2}+14^{2}}{5^{2}}} \\
& =\sqrt{\frac{7^{2}+2^{2} \cdot 7^{2}}{5^{2}}}=\sqrt{\frac{7^{2} \cdot 8}{5^{8}}}=\frac{7}{\sqrt{5}}
\end{aligned}
$$

$$
\frac{1}{y}
$$

Example 3. Find the closest point to \mathbf{y} in the subspace W spanned by \mathbf{v}_{1} and \mathbf{v}_{2}.

$$
\mathbf{y}=\left[\begin{array}{l}
3 \\
1 \\
5 \\
1
\end{array}\right], \mathbf{v}_{1}=\left[\begin{array}{r}
3 \\
1 \\
-1 \\
1
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}
1 \\
-1 \\
1 \\
-1
\end{array}\right]
$$

Note \vec{V}_{1} and \vec{V}_{2} are orthogonal. The Best Approximation The states that $\hat{\vec{y}}=\operatorname{proj}_{w} \vec{y}$ is the cbsest point to \vec{y} in W.

$$
\begin{aligned}
\hat{\vec{y}} & =\frac{\vec{y} \cdot \vec{v}_{1}}{\vec{V}_{1} \cdot \vec{V}_{1}} \vec{v}_{1}+\frac{\vec{y} \cdot \vec{v}_{2}}{\vec{V}_{2} \cdot \vec{V}_{2}} \vec{v}_{2} \\
& =\frac{9+1-5+1}{9+1+1+1} \vec{v}_{1}+\frac{3-1+5-1}{1+1+1+1}=\frac{3}{2} \vec{v}_{2} \\
& =\left[\begin{array}{c}
\frac{3}{2}+\frac{3}{2} \\
\frac{1}{2}-\frac{3}{2} \\
-\frac{3}{2}+\frac{3}{2} \\
\frac{3}{2}-\frac{3}{2}
\end{array}\right]=\left[\begin{array}{r}
3 \\
-1 \\
1 \\
-1
\end{array}\right]
\end{aligned}
$$

Recall that an orthogonal basis for a subspace W of \mathbb{R}^{n} is a basis for W that is also an orthogonal set.
Theorem 10. If $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is an orthonormal basis for a subspace W of \mathbb{R}^{n}, then

$$
\operatorname{proj}_{W} \mathbf{y}=\left(\mathbf{y} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+\left(\mathbf{y} \cdot \mathbf{u}_{2}\right) \mathbf{u}_{2}+\cdots+\left(\mathbf{y} \cdot \mathbf{u}_{p}\right) \mathbf{u}_{p}
$$

If $U=\left[\begin{array}{llll}\mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{p}\end{array}\right]$, then $\operatorname{proj}_{W} \mathbf{y}=U U^{T} \mathbf{y}$ for all \mathbf{y} in \mathbb{R}^{n}.

Example 4. Let $\mathbf{y}=\left[\begin{array}{l}7 \\ 9\end{array}\right], \mathbf{u}_{1}=\left[\begin{array}{r}1 / \sqrt{10} \\ -3 / \sqrt{10}\end{array}\right]$, and $W=\operatorname{Span}\left\{\mathbf{u}_{1}\right\}$.
a. Let U be the 2×1 matrix whose only column is \mathbf{u}_{1}. Compute $U_{1 \times 2}^{T} U_{2 \times 1}$ and $U_{2 \times 1} U_{1 \times 2}^{T}$
b. Compute $\operatorname{proj}_{W} \mathbf{y}$ and $\left(U U^{T}\right) \mathbf{y}$.
(a).

$$
\left.\begin{array}{rl}
u & =\frac{1}{\sqrt{10}}\left[\begin{array}{r}
1 \\
-3
\end{array}\right] \\
u^{\top} u & =\frac{1}{\sqrt{10}} \times \frac{1}{\sqrt{10}} \times[1 \\
u u^{\top} & =\frac{1}{\sqrt{10}} \times \frac{1}{\sqrt{10}} \cdot\left[\begin{array}{c}
-1 \\
-3
\end{array}\right]\left[\begin{array}{cc}
1 \\
-3 & -3
\end{array}\right]=\frac{1}{10}(1+9)=1 \\
10
\end{array} \begin{array}{cc}
1 & -3 \\
-3 & 9
\end{array}\right]
$$

(b) By The 10 .

$$
\begin{aligned}
& \operatorname{proj}_{w} \vec{y}=\left(y \cdot \vec{u}_{1}\right) \vec{u}_{1}=\frac{1}{\sqrt{10}} \times(7-27) \times \frac{1}{\sqrt{10}}\left[\begin{array}{l}
1 \\
-3
\end{array}\right]=\frac{1}{10}\left[\begin{array}{l}
-20 \\
-60
\end{array}\right]=\left[\begin{array}{l}
-2 \\
-6
\end{array}\right] \\
& u u^{\top} \vec{y}=\frac{1}{10}\left[\begin{array}{cc}
1 & -3 \\
-3 & 9
\end{array}\right]\left[\begin{array}{l}
7 \\
9
\end{array}\right]=\frac{1}{10}\left[\begin{array}{l}
-20 \\
-21+81
\end{array}\right]=\left[\begin{array}{l}
-2 \\
-6
\end{array}\right]
\end{aligned}
$$

Exercise 5. Find the best approximation to \mathbf{z} by vectors of the form $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}$.
$\mathbf{z}=\left[\begin{array}{r}2 \\ 4 \\ 0 \\ -1\end{array}\right], \mathbf{v}_{1}=\left[\begin{array}{r}2 \\ 0 \\ -1 \\ -3\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}5 \\ -2 \\ 4 \\ 2\end{array}\right]$.
Solution. Note that \mathbf{v}_{1} and \mathbf{v}_{2} are orthogonal. By the Best Approximation Theorem, the closest point in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ to \mathbf{z} is $\hat{\mathbf{z}}=\frac{\mathbf{z} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}+\frac{\mathbf{z} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2}=\frac{1}{2} \mathbf{v}_{1}+0 \mathbf{v}_{2}=\left[\begin{array}{r}1 \\ 0 \\ -1 / 2 \\ -3 / 2\end{array}\right]$.

